Genetic control of sodium channel function.

نویسندگان

  • Hanno L Tan
  • Connie R Bezzina
  • Jeroen P P Smits
  • Arie O Verkerk
  • Arthur A M Wilde
چکیده

Sodium ion (Na) influx through cardiac Na channels triggers the action potential in cells of the working myocardium and the specialized conduction system. Na channels thus act as key molecular determinants of cardiac excitability and impulse propagation. Na channel dysfunction may cause life-threatening arrhythmias. Here, we review the ways in which Na channel function can be aberrant due to genetic changes. We discuss how biophysical studies of mutant Na channels combined with precise clinical phenotyping may improve our understanding of Na channel function in health and disease and may be useful as a model from which to derive improved treatment strategies for common disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 134: Use of Zinc in Drugs to Improve Neuroinflammation Disease

Zinc is a substance that regulates neural excitability by binding whit sodium channel and potassium channel. The efficiency of free zinc ion, make down the neural survival rate, reduced the peak amplitude of Na+ and make depolarization Na channel, increased the peak amplitude of transition outward k+ currents and delayed rectifier. Also it is an effective blocker of one subtype of tetrodoxine (...

متن کامل

Comparison of Three Soft Computing Methods in Estimating Apparent Shear Stress in Compound Channels

Apparent shear stress acting on a vertical interface between the main channel and floodplain in a compound channel serves to quantify the momentum transfer between sub sections of this cross section. In this study, three soft computing methods are used to simulate apparent shear stress in prismatic compound channels. The Genetic Algorithm Artificial neural network (GAA), Genetic Programming (GP...

متن کامل

Molecular Chaperone Calnexin Regulates the Function of Drosophila Sodium Channel Paralytic

Neuronal activity mediated by voltage-gated channels provides the basis for higher-order behavioral tasks that orchestrate life. Chaperone-mediated regulation, one of the major means to control protein quality and function, is an essential route for controlling channel activity. Here we present evidence that Drosophila ER chaperone Calnexin colocalizes and interacts with the α subunit of sodium...

متن کامل

The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice.

The mineralocorticoid aldosterone is a major regulator of sodium transport in target epithelia and contributes to the control of blood pressure and cardiac function. It specifically functions to increase renal absorption of sodium from tubular fluid via regulation of the alpha subunit of the epithelial sodium channel (alphaENaC). We previously used microarray technology to identify the immediat...

متن کامل

Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation

Cardiac voltage-gated sodium channels (Nav1.5) play an essential role in regulating cardiac electric activity by initiating and propagating action potentials in the heart. Altered Nav1.5 function is associated with multiple cardiac diseases including long-QT3 and Brugada syndrome. Here, we show that Nav1.5 is subject to palmitoylation, a reversible post-translational lipid modification. Palmito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 57 4  شماره 

صفحات  -

تاریخ انتشار 2003